

Environmental Research & Education Foundation

Lighting a path to sustainable waste management practices

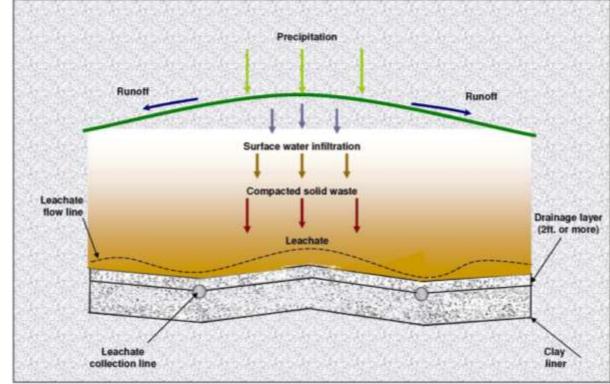
Environmental Research and Education Foundation

Leachate 201 Treatment Issues/Challenges

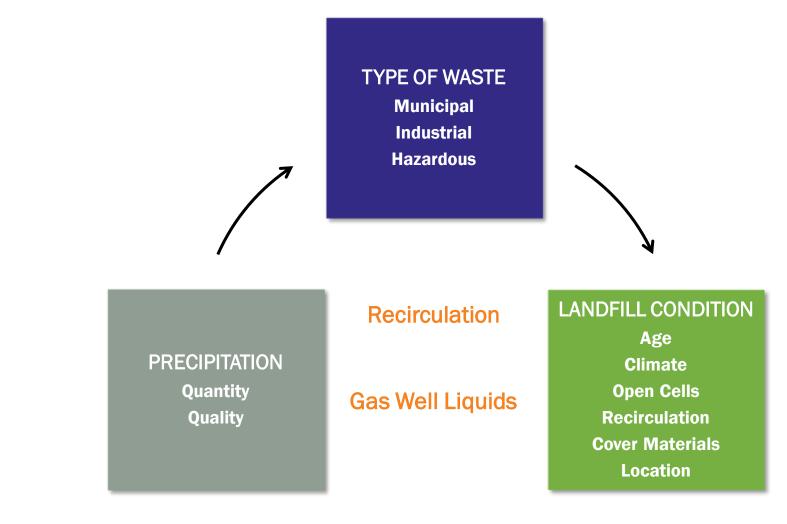
Course Overview

- Review of Leachate 101
- Leachate 201
 - Considerations for Disposal
 - Off-site Disposal Issues for POTWs
 - Leachate Treatment Technologies & Application
 - Emerging Issues

Review of Leachate 101

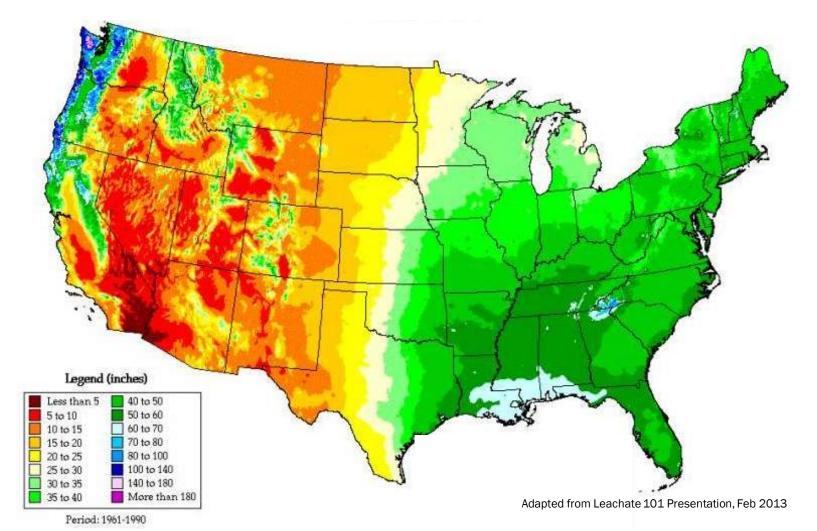

General Concepts Covered

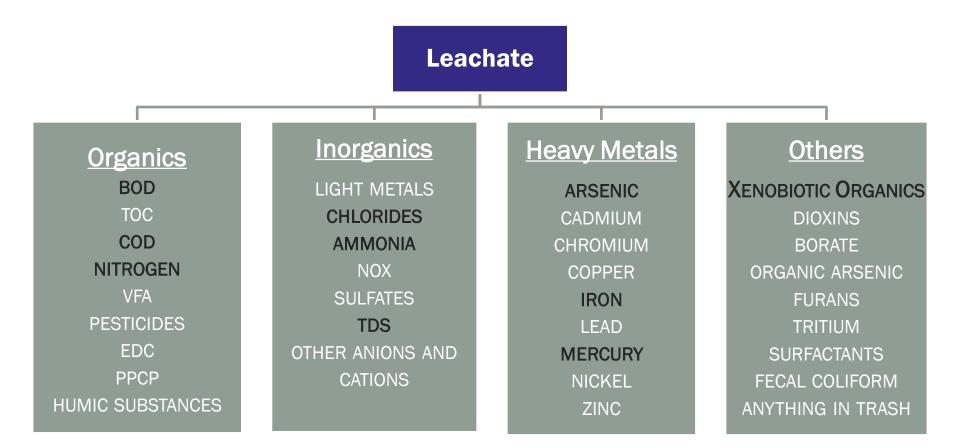
- Leachate generation
- **2** Leachate Composition
- **3 Impacts of climate on leachate**
- 4 Management and Storage


Leachate Generation

- Rainfall (climate)
- Infiltration (cover)
- Moisture content (waste)
- Additional liquids (recirculation)

Adapted from Leachate 101 Presentation, Feb 2013


Factors Affecting Leachate Composition



Impacts of Climate Change on Leachate

Average Annual Precipitation in the US

Leachate Composition

MSW Leachate Composition vs. Landfill Age

	Concentration (mg/L)						
Leachate Constituent	Transition Phase 0 – 5 Yrs	Acid - Formation Phase 5 – 10 Yrs	Methane - Formation Phase 10 – 20 Yrs	Final Maturation Phase > 20 Yrs			
BOD	100 - 11,000	1,000 - 57,000	100 - 3,500	4 - 120			
COD	500 - 22,000	1,500 - 71,000	150 - 10,000	30 - 900			
CBOD/COD Biodegradability	0.23 – 0.87 Increasing	0.4 – 0.8 High	0.17 – 0.64 Decreasing	0.02 - 0.13 Low			
TOC	100 - 3,000	500 - 28,000	50 - 2,200	70 - 260			
Ammonia	0 - 190	30 - 3,000	100 - 500	100 - 500			
NO ₃ - N	0 - 500	0 - 20	0 - 1.5	0 - 0.6			
TDS	2,500 - 14,000	4,000 - 55,000	1,100 - 6,400	1,460 - 4,640			

MSW Leachate Composition vs. Landfill Age

	Concentration (mg/L)						
Leachate Constituent	Transition Phase 0 – 5 Yrs	Acid - Formation Phase 5 – 10 Yrs	Methane - Formation Phase 10 – 20 Yrs	Final Maturation Phase > 20 Yrs			
BOD	100 - 11,000	1,000 - 57,000	100 - 3,500	4 - 120			
COD	500 - 22,000	1,500 - 71,000	150 – 10,000	30 - 900			
CBOD/COD Biodegradability	0.23 – 0.87 Increasing	0.4 – 0.8 High	0.17 – 0.64 Decreasing	0.02 - 0.13 Low			
TOC	100 - 3,000	500 - 28,000	50 - 2,200	70 - 260			
Ammonia	0 - 190	30 - 3,000	100 - 500	1 00 – 500			
NO ₃ - N	0 - 500	0 - 20	0 - 1.5	0 - 0.6			
TDS	2,500 - 14,000	4,000 - 55,000	1,100 - 6,400	1,460 - 4,640			

Leachate Minimization and Management

- Leachate management system
 - Drainage layers (gravel, sand, drainage net)
 - Collection piping
- Stormwater separation
 - Geosynthetic rain cover
 - Separation berms
 - Pipe connections

Adapted from Leachate 101 Presentation, Feb 2013

Leachate Storage Systems

Above ground

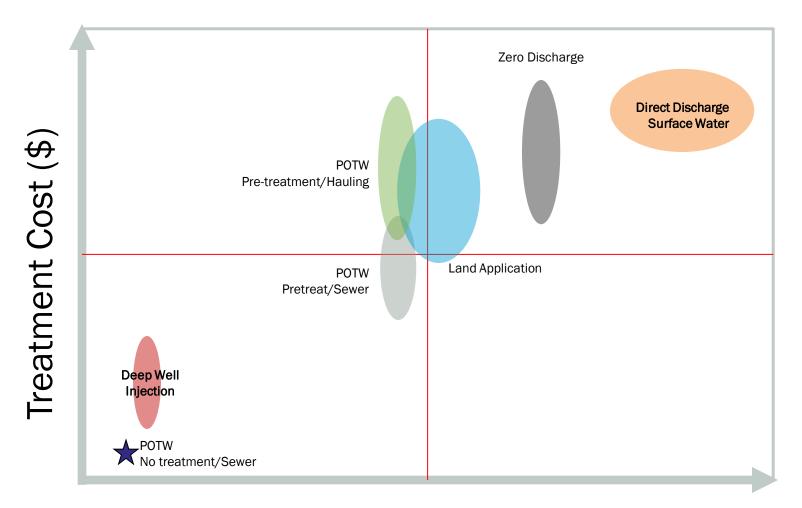
- Steel tanks
 - Bolted, welded, glass lined, stainless, epoxy coated, lined
- Plastics
 - Tanks, impoundments

Storage lagoons and ponds

Geosynthetic, concrete

Leachate 201

Considerations for Disposal


Minimization Example: Annual Projected Leachate Volume Generation

Leachate Disposal Options

Comparative Treatment Cost

Management Complexity

Selection Criteria and Key Considerations

- Leachate quality/quantity
- Land availability
- Disposal route
- Discharge limits
- Climate
- LFG availability
- Site operations capabilities
- Site preferences

- Landfill life
- Air emissions
- POTW Capacity
- POTW Processes
- Energy Costs
- Residual disposal
- Site preferences
- Minimization potential

Basis for Limits Direct Discharge to Surface Water

TBEL's

- Best available technology
- Established based on best professional judgment
- Federal ELGs (40 CFR Part 403)

TMDL

 Impaired water bodies where water quality standards are not expected to be met after implementation of technology-based effluent limitations on point sources

WQBEL

- Established when TBEL's are not stringent enough to meet State WQS
- Based on designated water body use
- Mass balance (does not apply for some pollutants)
- Mixing zone rules and limitations

WET

- Acute toxicity limit
- Chronic toxicity limit

Basis for Limits Indirect Discharge to POTWs

Industrial Pretreatment Program

- Local discharge limits issued by local municipality or sewer agency
 - Same limit apply to all industrial users
 - Specific limits for each industrial user
- Categorical Pretreatment Standards (Federal) specific to defined categories of industries, 40 CFR 405 – 499
 - Treatment technology based limits
- Surcharges for compatible pollutants

Comparison of Effluent Limitations

		Monthly Daily Concentrations				
Parameter	Unit	Typical POTW Pretreatment ¹ Average	Direct Discl Average	harge ² Maximum		
BOD ₅	mg/L	200 - 500	37	37		
TSS	mg/L	100 - 1,000	27	27		
Ammonia	mg/L	25 - 300	4.9	4.9		
Zinc	mg/L	Site specific	0.11	0.11		
Alpha Terpineol	mg/L	Site specific	0.016	0.016		
Benzoic Acid	mg/L	Site specific	0.071	0.071		
p-Cresol	mg/L	Site specific	0.014	0.014		
Phenol	mg/L	Site specific	0.015	0.015		
рН	std. units		6.0 - 9.0			

Notes

- 1. General range of POTW is compiled based on project experience
- 2. Table 2-2 Non-Hazardous Landfill Subcategory , EPA-821-R-99-019
- 3. Site specific discharge permits will likely require additional parameter monitoring and/or impose additional parameter limitations

Other Regulatory Considerations

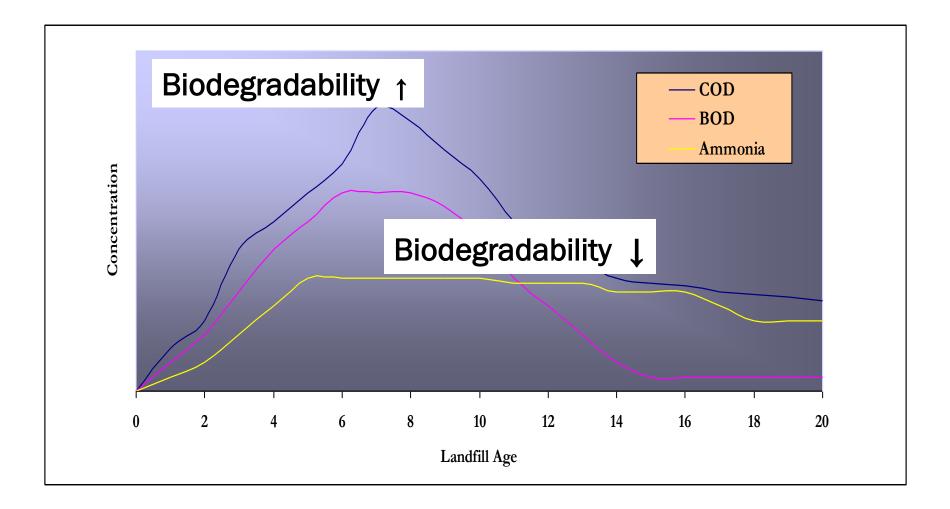
- Air emission
 - Storage
 - Treatment/Pretreatment
 - Zero discharge
 - Land application?
- Groundwater protection/quality
 - Land application
 - Deep well injection
- Residuals management
 - Treatment/Pretreatment
 - Zero discharge
 - Land application?
 - Deep well injection?
- OSHA-Virtually all

Leachate Disposal Costs Example

Landfill	Management	Costs	Notes
A	Option 1: Raw leachate discharged to a POTW –X through sewer connection	\$0.02/gal (1) typical range: \$0.02 to \$0.05	Annual savings > \$200,000/yr
	Option 2: Hauling raw leachate to a POTW-Y	\$0.055/gal	Compared to Option 2
В	Direct discharge to surface water	\$0.05/gal (2) typical range: \$0.02 - \$0.05 \$0.02 (less stringent limits) \$0.05 (very stringent limits)	Membrane Bioreactor (MBR) Technology

Notes

1. Includes surcharges for NH3-N, TSS, and BOD on a mass basis (\$/lb); analytical, sampling and sewer connection costs.


2. Includes amortized capital costs for equipment purchase and installation, O&M costs over a 20-year period.

Offsite Disposal -Issues for POTWs

Leachate Characteristics vs. Landfill Age

MSW Leachate vs. Domestic Wastewater Composition

Parameter	11	Domestic Wastewater ¹		Landfill Leachate		
	Unit	Weak/Medium	Strong	MSW	Ash-fill ³	C&D ⁴
BOD	mg/L	110 - 190	350	500 - 3,300	4 - 100	
COD	mg/L	250 - 430	800	1,800 - 4,350	500 - 2,000	150 - 700
тос	mg/L	80 - 140	260	-	10 - 80	20 - 625
Ammonia	mg/L	12 - 25	45	150 - 2,250	25 - 90	
NO ₂ /NO ₃	mg/L	0	0	0		
Total P	mg/L	4 - 7	12	3 - 10		
TSS	mg/L	120 - 210	400	50 - 150	15 - 60	

Notes

- 1. Adapted from Table 3-15 from Metcalf & Eddy, $4^{\mbox{th}}$ Edition
- 2. Observations from onsite storage tanks
- 3. Observations from with segregated leachate streams
- 4. Townsend et al. 2000.

MSW Leachate vs. Domestic Wastewater MSW Leachate is 10 – 70 times the strength of domestic sewage and reacts differently in treatment

Parameter Unit	11	Domestic Wastewater ¹		Landfill Leachate		
	Unit	Weak/Medium	Strong	MSW ²	Ash-fill ³	C&D ⁴
BOD	mg/L	110 - 190	350	500 - 3,300	4 - 100	
COD	mg/L	250 - 430	800	1,800 - 4,350	500 - 2,100	150 - 700
тос	mg/L	80 - 140	260	-	10 - 80	20 - 625
Ammonia	mg/L	12 - 25	45	150 - 2,250	25 - 100	
NO ₂ /NO ₃	mg/L	0	0	0		
Total P	mg/L	4 - 7	12	3 - 10		
TSS	mg/L	120 - 210	400	50 - 150	15 - 60	

Notes

- 1. Adapted from Table 3-15 from Metcalf & Eddy, 4^{th} Edition
- 2. Observations from onsite storage tanks
- 3. Observations from with segregated leachate streams
- 4. Townsend et al. 2000.

MSW Leachate vs. Domestic Wastewater Composition

Parameter	Unit	Domestic Wastewater ¹		Landfill Leachate		
Farameter		Weak/Medium	Strong	MSW	Ash-fill ³	C&D ⁴
рН	mg/L	-	-	6.8 - 7.5		6.0 - 8.0
TDS	mg/L	270 - 500	860	5,000 - 20,000	25,000 - 50,000	1,000 - 6,000
Alkalinity as CaCO ₃	mg/L	50 - 100	200	850 - 8,000	50 - 100	-
Hardness as CaCO ₃	mg/L			-		-
Chloride	mg/L	30 - 50	100	750 - 1,200	15,000 - 25,000	10 - 6,000
Sulfate	mg/L	20 - 30	50	150 - 500	600 - 1,000	30 - 2,100
VOC/SVOC	mg/L					

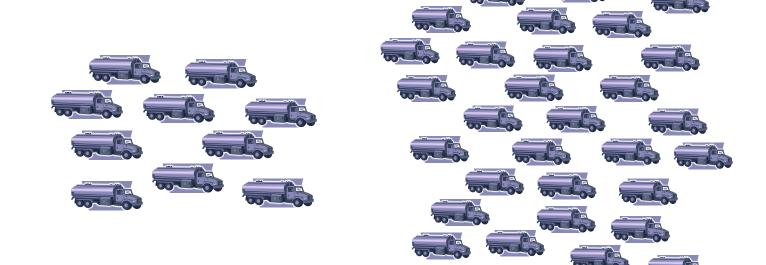
Notes

1. Adapted from Table 3-15 from Metcalf & Eddy, 4th Edition

- 2. Observations from onsite storage tanks
- 3. Observations from with segregated leachate streams
- 4. Townsend et al. 2000.

MSW Leachate vs. Domestic Wastewater Composition

Doromotor	Unit	Domestic Wastewater ¹		Landfill Leachate		
Parameter		Weak/Medium	Strong	MSW	Ash-fill ³	C&D ⁴
рН	mg/L	-	-	6.8 - 7.5		6.0 - 8.0
TDS	mg/L	270 - 500	860	5,000 - 20,000	25,000 - 50,000	1,000 - 6,000
Alkalinity as CaCO ₃	mg/L	50 - 100	200	850 - 8,000	50 - 100	-
Hardness as CaCO ₃	mg/L			-		-
Chloride	mg/L	30 - 50	100	750 - 1,200	15,000 - 25,000	10 - 6,000
Sulfate	mg/L	20 - 30	50	150 - 500	600 - 1,000	30 - 2,100
VOC/SVOC	mg/L			BRL – 0.5		


Notes

- 1. Adapted from Table 3-15 from Metcalf & Eddy, 4th Edition
- 2. Observations from onsite storage tanks
- 3. Observations from with segregated leachate streams
- 4. Townsend et al. 2000.

MSW Leachate vs. Gas Well Condensate

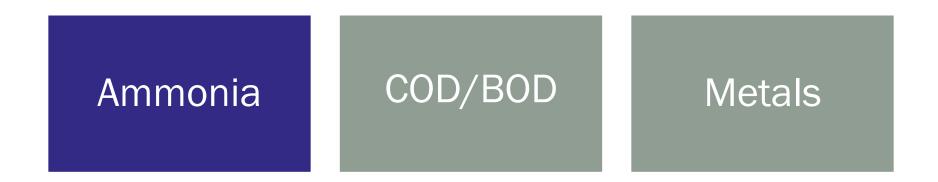
Parameter		Landfill Leachate	Condensate
	Unit	Typical	Observed
BOD	mg/L	500 - 3,300	1,000 - 10,000 +
COD	mg/L	1,800 - 4,350	3,000 - 20,000+
Ammonia	mg/L	150 - 2,250	500 - 10,000
NO ₂ /NO ₃	mg/L	0	-
VOC/SVOC	mg/L	Varied	5x – 10x, possibly free product
TDS	mg/L	500 - 5,000	3,000 - 50,000+

Comparative Waste Loadings (Rule of Thumb)

Domestic WW 1 Equivalent

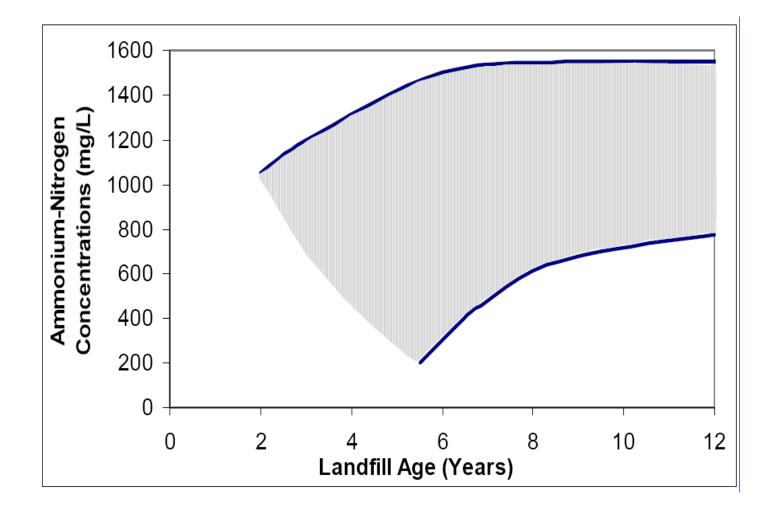
MSW Leachate 10 Equivalents

Condensate 30 Equivalents


Potential Impacts to POTWs

- Ammonia removal inhibition
- Biological treatment upset
- Metals (e.g., arsenic)
- Color
- UV transmittance (POTW issue)
- TDS/Chlorides (e.g. deflocculation, pass through into effluent)
- Refractory dissolved organic nitrogen (rDON)
- Non-degradable COD
- Odors
- Foaming
- Sulfate (sewer odor)

Most Common Problematic Parameters


Total nitrogen (TN) limits are becoming more common in discharge permits (POTW and Discharge – NPDES) requiring advanced treatment

Why Nitrogen?

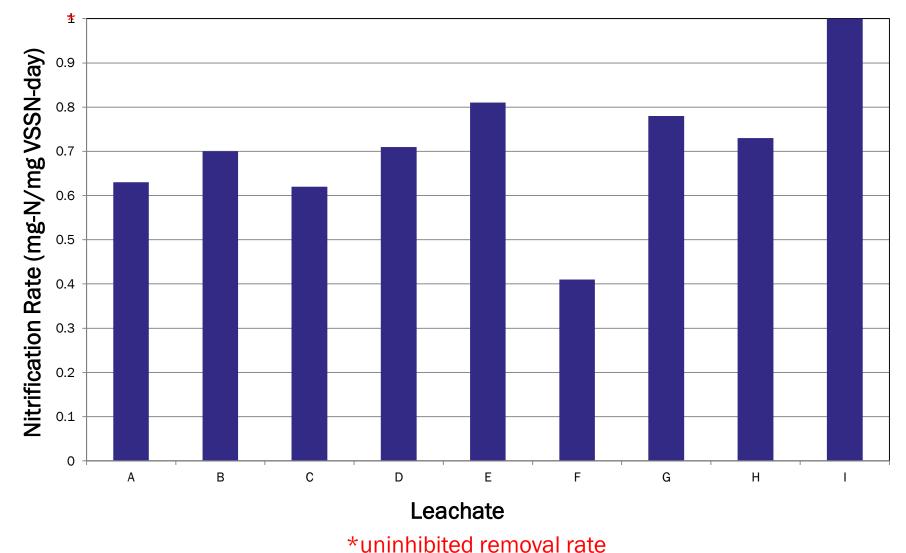
- Toxicity (unionized ammonia is gaseous, and toxic to fish)
- Oxygen Depletion (adversely affects aquatic life)
- Eutrophication (algal growth)
- Reduced Chlorination Efficiency (during disinfection, i.e. chloramines)
- Corrosion (ammonia)
- Blue Baby Syndrome (blood cannot carry oxygen to cells)
 - NO_x and ammonia

Ammonia-N vs. Landfill Age

Aerobic Biological Treatment

- Commonly used (landfill bioreactor, constructed wetland, onsite WWTF, POTW)
- Most operators are cognizant of operational requirements

BOD/COD and Ammonia Interaction


- Heterotrophs faster growing bacteria than nitrifiers
- Nitrification rates tend to drive the size of sludge age and size of basin
- Once ammonia removal accomplished, carbonaceous organic concentrations general significantly lowered
- Typically not concerned about BOD removal rates but they can be inhibited in similar fashion to nitrifiers

Nitrification Considerations

- Nitrifiers are slow growers (define reactor size/sludge age)
- Nitrification tends to be an "all-or-none" phenomenon (on or off)
- Nitrifier floc don't settle well--need heterotrophs or BOD consuming bacteria to form a good settling floc or a robust solids/liquid separation process
- Kinetics of growth are very sensitive to:
 - Temperature (10 Deg C > range < 32 Deg C, significant decrease in rate beyond this range)
 - Alkalinity (3.7 g of CaCO3 / g N removed); pH (optimal 7.5 8.6 s.u.)
 - Dissolved oxygen (> 2 mg/L)
 - Prone to toxicity (i.e. metals, unionized ammonia)

Nitrogen: Range of Nitrification Rates

Leachate Treatment Technologies & Application

When Selecting a Technology, Consider...

Is it flexible?

Able to meet current and future stringent limits

2 Is it consistent and reliable?

Able to adapt to various situations

3 Does it offer ease of use and lowest life cycle costs?

Low on capital and O&M

Treatment Approaches

Physical/Chemical

Biological

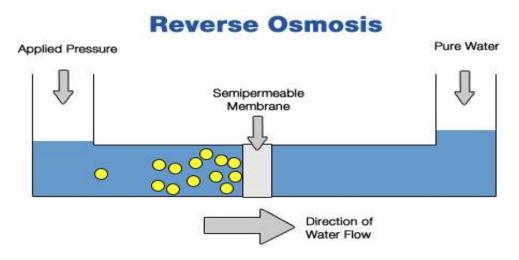
Physical/Chemical Technologies

Physical Treatment Examples

- Precipitation/flocculation/sedimentation
- Media filtration
- Membrane filtration
- Ion exchange/adsorption
- Air/Ammonia stripping
- Flash distillation
- RO

Chemical Treatment Examples

- Chemical/advanced oxidation
 - Break point chlorination
 - Fenton oxidation
 - Ozone/hydrogen peroxide
 - UV based processes not applicable
- Evaporation (volume reduction)

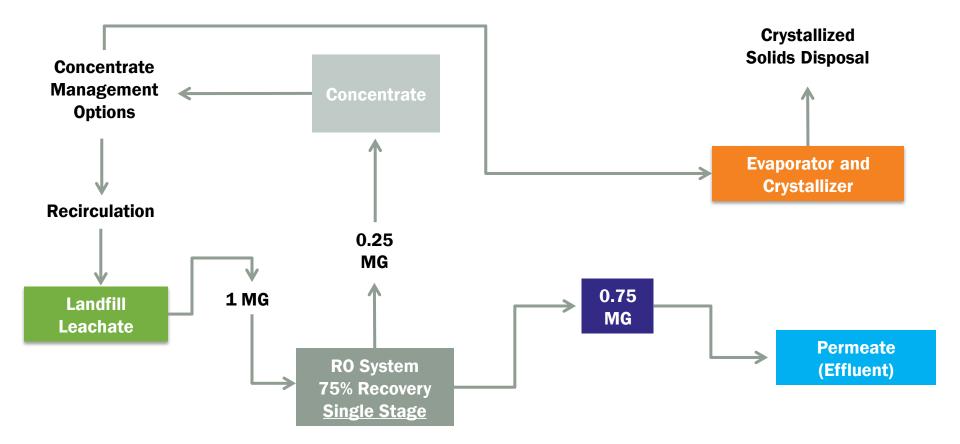


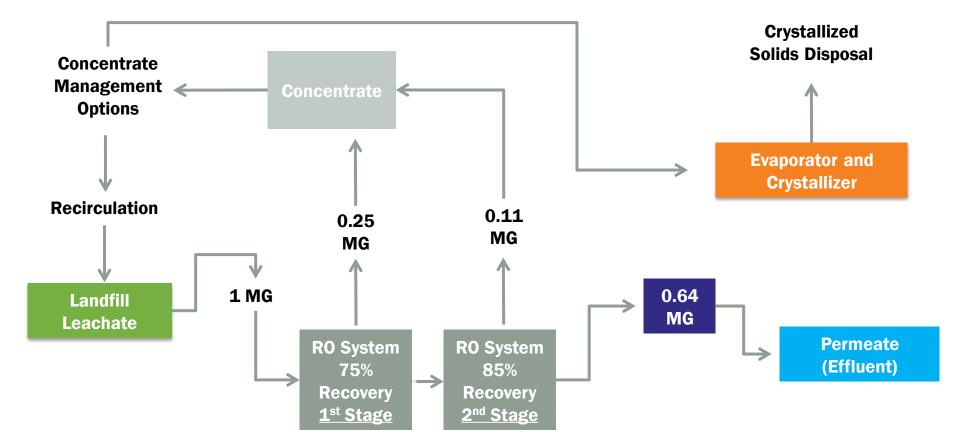
General Observations: Non-Biological Processes

- Non-destructive, phase transfer (liquid to solid or vapor)
- None are generally capable of serving as a stand alone technology for direct discharge (e.g. surface water)
- Most are mechanically simple but may be operationally intensive (backwashing, media change outs, etc.)
- Leachate composition makes selective removal unlikely
- RO possible but may require upfront pre-treatment (solids and colloidal organics) and post treatment (ammonia, organics, pH, ion supplementation)
- Residuals management can be problematic

Reverse Osmosis (RO)

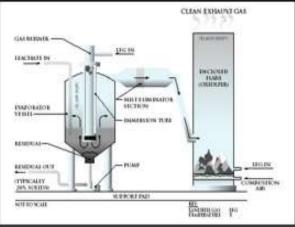
- Membrane technology
- Highest level of treatment
- Physical barrier < 0.001 micron-meter
- Performance expressed in MWCO
 - Lower MWCO means tighter membrane
- Future application: TDS, color, ECOC: EDCs and PPCPs removal


Example RO Processes

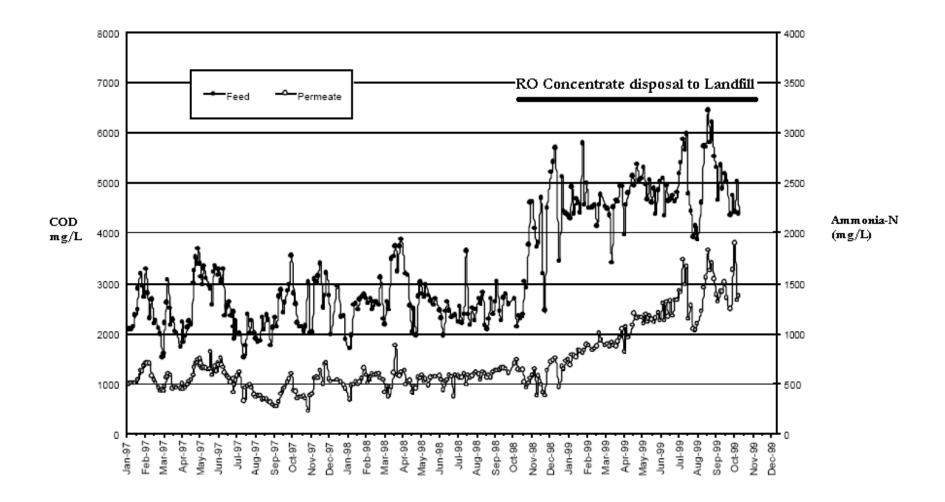


RO: Process Flow Single Stage Process

RO: Process Flow Two Stage Process



More RO Stages will Reduce Overall System Recovery!! Multiple Stages are Required to meet Effluent NH₃-N Quality


Evaporation

- Typically 80-90% volume reduction
- Small footprint
- Flexible fuel source (waste heat, LFG, NG, LP)
- Air emission
- Residuals management

Impacts of RO Concentrate Recirculation – COD and NH3-N

Biological Removal: General Observations

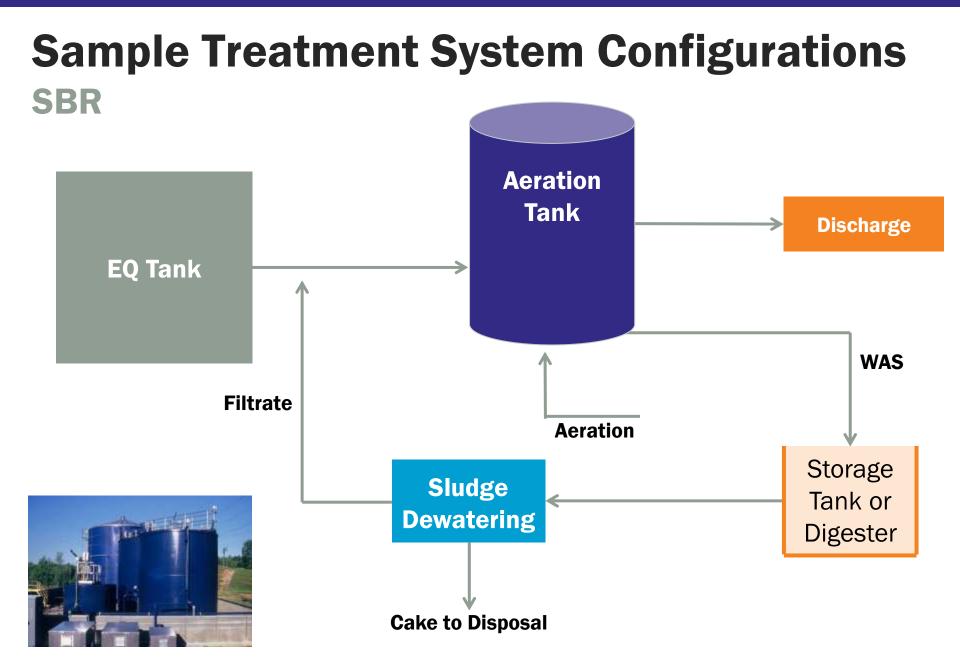
- Constituents are removed, destroyed or transformed
- Most commonly applied treatment strategy
- Can operate as stand alone treatment systems
- Can operate over a wide variety of leachate conditions
- Leachate inhibits nitrification (factor into design)
- Operational/labor requirements vary widely
- Treatment costs tend to be lower than the physical removal strategies

Biological Strategies

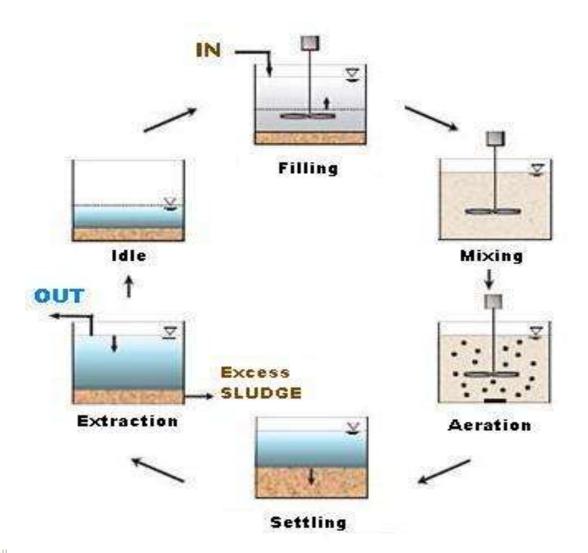
Natural Systems

- Lagoons
- Constructed/engineered wetlands
- Phytoremediation
 - Poplar and Willow Trees
 - Vertiver grass
 - Shrubs

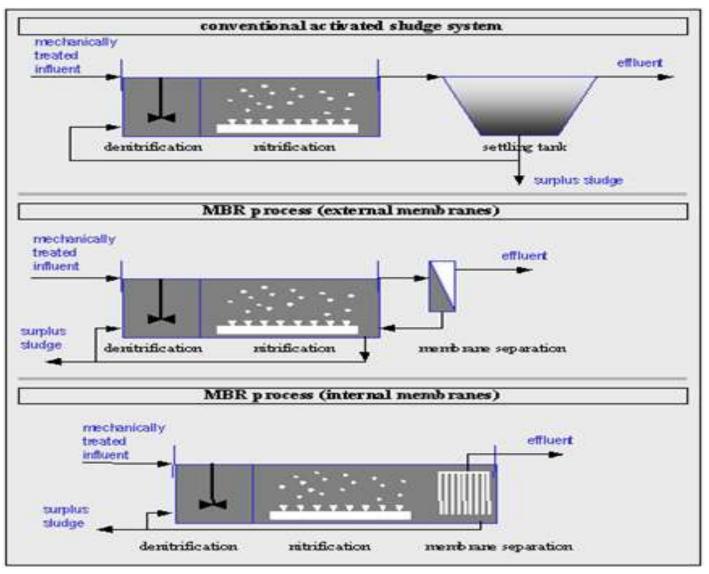
Brown and Caldwell


Biological Strategies

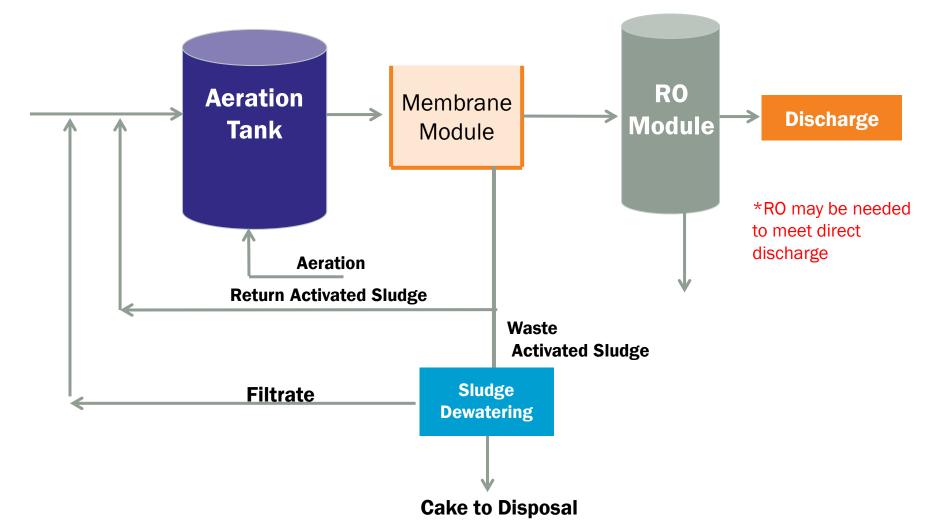
Tank Based Biological


- Sequencing batch reactors (SBR)
- Membrane bioreactors (MBR)
- Conventional activated sludge (AS)
- Powdered activated carbon treatment (PACT)
- Moving bed biofilm/biological reactor (MBBR)
- Integrated fixed-film activated sludge (IFAS)
- Fixed film

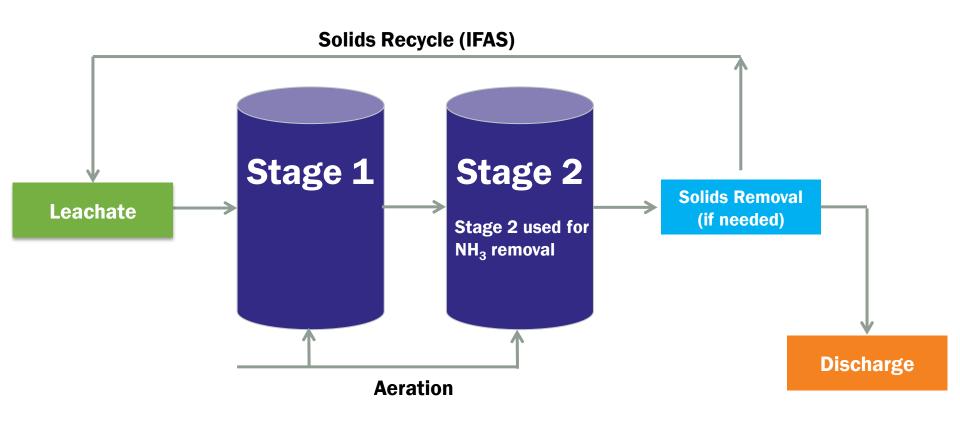
SBR Process Single Tank Operation Steps



Membrane BioReactor Treatment

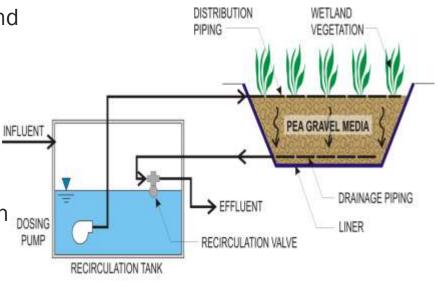

MBR: Activated Sludge Followed by Ultrafiltration

- Physical Barrier
 - 0.01 0.05 um nominal pore size (RO is 2 orders of magnitude smaller than UF)
 - Current disc filter nominal pore size is 10 um (2-3 orders of magnitude larger than UF)
- Replaces conventional clarifier thus avoiding sludge settling and contaminant carryover issues
- Eliminates need for additional filtration
- Uses automated cleaning and back-pulsing for membrane maintenance


MBR Process Comparison

Sample Treatment System Configurations MBR/MBR-RO

MBBR/IFAS



Moving Bed Bioreactor (MBBR)

Constructed Wetlands

- Plants and bacteria use ammonia-N as a nitrogen source
 - Plants: hyacinth
- Nitrification
- Surface flow (SF), subsurface flow (SSF), and hybrid wetlands
- SSF
 - Horizontal and vertical flow
 - Higher efficiency than SF
 - More temperature resistance than SF (freezing)
- Fill Material
 - Plants, sand , gravel, wood chips (carbon source)
- SSF = horizontal flow wetlands
 - Denitrification (wood chips)
- SSF = vertical flow wetlands
 - Ammonia removal
 - Facilitates oxygen transfer from the atmosphere

VERTICAL FLOW WETLAND

Issues on the Horizon

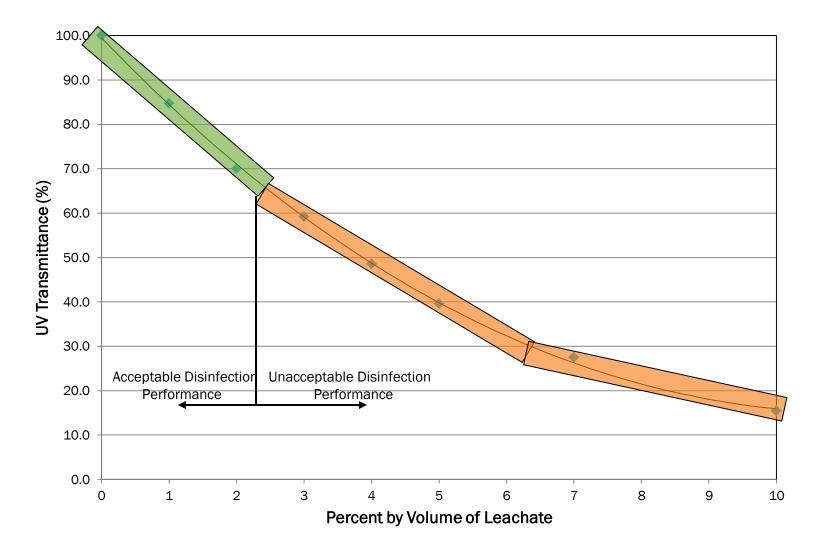
Near Term

- Color
- UV transmittance (POTW)
- Nutrients
- Refractory Dissolved Organic Nitrogen
- Total Dissolved Solids/ chlorides

Longer Term

- Emerging contaminants
 - Boron, PFCs, future unknowns
- Pharmaceutical and Personal Care Products
- Nano-particles

Brown and Caldwell



Emerging Contaminants: EDC & PPCP

- A recent study by the MaineDEP showed that PPCPs were present in landfill leachate
- Raw leachate samples from three MSW landfills were analyzed for 135 individual pharmaceutical and health care products
- The analytical results showed that the samples contained approximately 40 pharmaceutical compounds
- Pharmaceuticals are discarded in household waste and appear in landfill leachate
- Regulatory agencies may try to regulate the release of pharmaceuticals to receiving streams from POTWs because of the toxic impacts to aquatic life (e.g. sex changes in fish)
- Drive to educate public to eliminate sewering of unused pharmaceuticals. Anticipate higher volumes of pharmaceuticals being directed to landfills

UVT: Effect of Leachate on UVT at POTW

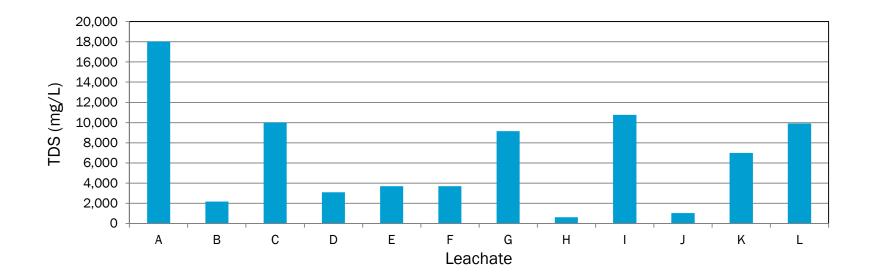
UVT and Color: No Clear Correlation

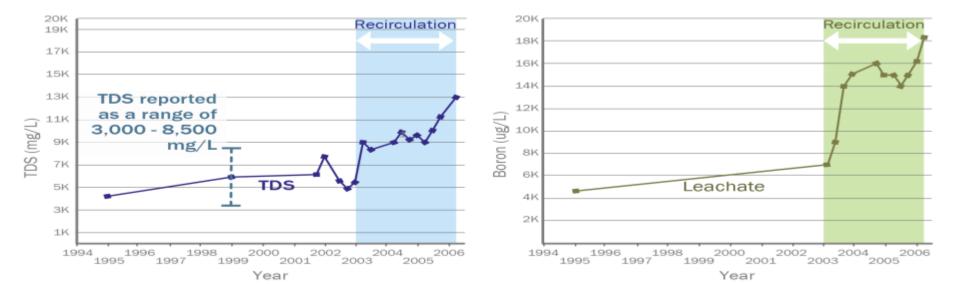
Matrix Treatment	True Color (PCU)	UVT (%)
Raw Leachate	1950	0
Perozone (2,000 ppm) with 12 Minute Contact Time	105	0.2
Chlorination (1,000 ppm) with 1 Hour Contact Time	100	0.1
Chlorination (1,000 ppm) with 18 Hour Contact Time	50	0.1

Color/UV Transmittance

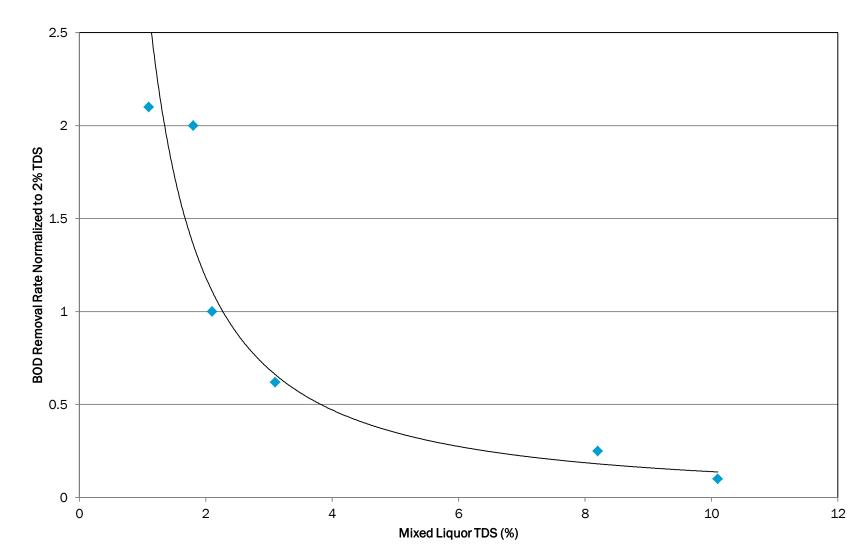
Landfill A

- Raw leachate color = 4,000 4,500 PCU
- Current LTP limit = 1,500 PCU was reduced to 100 PCU for future new LTP
- BAT: Emphasis on costs and other non environmental factors
- Waiver request to 2,000 PCU (in progress)

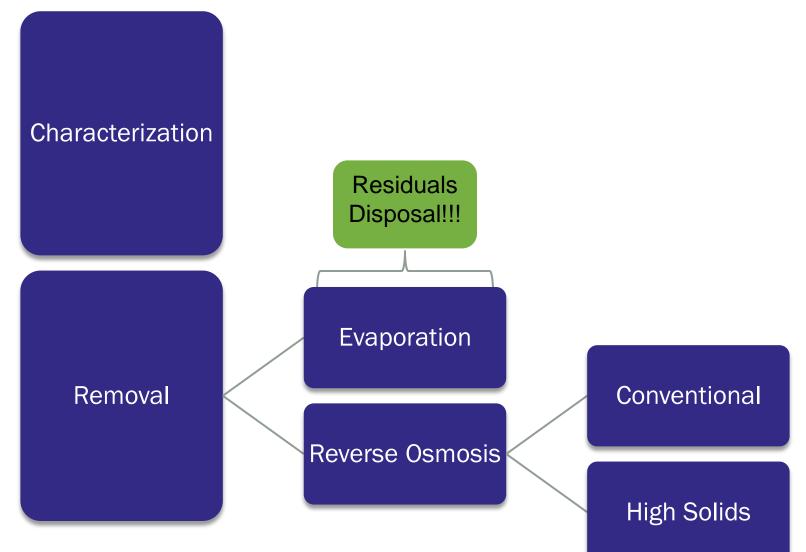

Landfill B


- Concerns of Leachate Color impacting UV Performance at POTW
- Treatability
 - Chlorination: 95% Removal (currently adopted to meet Antrim discharge requirements)
 - PerOzone: 90%
 - Ozone: 86 %
 - Ozone and PAC: 80%
 - PAC: 75%
 - Coagulation: 68%
- No Relationship between Color and UV transmittance
- Leachate Flow > 1% of POTW impacted UV performance (< 63% transmittance needed for adequate disinfection)

Technology	Removal (%)
Metals _R / MBR	50
GAC	80.3
Ozone and GAC	82.3
PerOzone	89.7
RO	95.4


Color (PCU)	UV Transmittance (%)
900	0
105	0.2
100	0.1
50	0.1

TDS: Typical Range



TDS: Effect on Organics Removal

Inorganic TDS/CI Removal

Brown and Caldwell

Refractory Dissolved Organic Nitrogen - rDON

What is rDON?

Comprises of the following:

- Humic substances (humic acids, fulvic acids, and humins)
- Polymerized organic compounds
 - Endogenous decay of biomass and release of intracellular material
 - Released during high substrate utilization rate

rDON Example

- Discharge to POTW which discharges to the Chesapeake Bay Watershed (CBW)
- rDON load to POTW:
 - 18% or 1.45 mg/L @ avg flow
 - 36% or 2.9 mg/L @ peak flow
 - POTW Discharge Allocation for TN = 8 mg/L
- Treatability: GAC, H2O2, Hypochlorite, and High pH were evaluated (no removal observed)
- Per CBW Program : variance could be achieved if the permittee can demonstrate that the constituent is not bioavailable in the plant and in the watershed (consistent with CBW models). Submit a preliminary design report identifying technologies and operational changes implemented

Technologies on the Horizon

- Anaerobic treatment
- Nitrogen removal alternatives
 - Biological
 - Physical/chemical
- Contaminant specific sorbents
- Thermophilic (select wastes)

Thank You!

Environmental Research & Education Foundation

Lighting a path to sustainable waste management practices

Kevin Torrens 201-574-4749 ktorrens@brwncald.com Brian Brazil 301-479-1263 bbrazil@brwncald.com

EREF events@erefdn.org