Anaerobic Digestion Applications for Municipal Solid Waste: Fundamentals, Designs, and Current Projects

Course Presented by: Susan DeLong, Ph.D. Sybil Sharvelle, Ph.D. Colorado State University

Outline of Presentation

- 1. Overview of anaerobic digestion microbiology
- 2. Anaerobic digestion technologies used for treatment of municipal solid waste including:
 - a) Low-solids technologies
 - b) High-solids technologies
- 3. Advantages and disadvantages of available technologies
- 4. History and current projects of full-scale AD of MSW including:
 - a) Demonstration plants and commercial digesters in North America
 - b) Commercial digesters in Europe, Asia and others

Overview of Anaerobic Digestion Microbiology

- <u>Anaerobic Digestion (AD)</u>: a bacterial fermentation process that occurs in the absence of oxygen and produces mainly methane and carbon dioxide.
 - Requires a consortium of microorganisms.
 - Optimum conditions must be provided for microbial activity:
 - near-neutral pH,
 - optimum carbon to nitrogen ratios,
 - nutrients,
 - appropriate temperature (30-40°C or 50-60°C),
 - lack of inhibitors.

AD Process Schematic

Categories of AD Systems Used for Treatment of MSW

- All systems can be mesophilic (operated at 35°C) or thermophilic (operated at 55°C).
- Optimum technology depends on waste composition (e.g., solids content), co-product markets, and other case-specific variables.

Categories of AD Systems

Single-stage

Batch Digesters

- Advantages
 - Simple to build, low capital investment
 - Low water input
 - Could be used to separate other useful products (organic acids)
 - Can also be used for hydrolysis stage in multi-stage processes
- **Disadvantages** (when used for single-stage processes)
 - Uneven biogas production
 - Lag phase
 - Lack of stability
 - Typically larger footprint of continuous, dry digestion systems
 - Footprint is a function of reactor height and retention time selected

Low-solids Single-stage

- Best for pulpable slurries (wastewater sludge, manure, pulped foodwaste, co-digestion of wastewater sludge and food waste).
- Feedstock stream must contain <15% total solids.
 - MSW requires dilution.
- Organic loading rates typically of 0.033-0.066 lbs VS/gal/day.

Figure 10. Schematics of the Waasa one-stage digestion process [45]. BIMA

Figure from Rapport et al., 2008

Low-solids Single-stage

- Advantages
 - Simple to design and operate as compared to multi-stage processes.
 - Less expensive than multi-stage technologies.
- Disadvantages
 - Require low organic loading rate (OLR) because methanogens can easily be disrupted.
 - Longer contact times required.
 - MSW slurries can separate and a scum layer can form that disrupts microbial degradation and clog pipes and pumps.
 - Pretreatment to remove inert solids and homogenize waste required
 - Waste dilution with process water can lead to build up of inhibitors.
 - If toxic compounds are present in MSW they can readily diffuse throughout the reactor and shock microorganisms, including sensitive methanogens.

Low-solids Multi-stage

- Two (or more stages) separate hydrolysis/fermentation form methanogenesis
 - Stages may be optimized independently
 - More stable than single-stage AD

Figure from Rapport et al., 2008

Low-solids Multi-stage

Advantages

- Each type of microorganism has different optimal conditions, can optimize processes separately
 - Fermenters prefer lower pH
 - Methanogens prefer 7-8.5
 - Dilute to raise pH prior to methanogenesis
- Can incorporate high-rate methanogenesis technologies
 - Up-flow anaerobic sludge blankets
 - Fixed-film reactors
- Higher OLR
- Higher methane production rates
- Disadvantages
 - Higher capital costs

High-solids Single-stage

- Popular for application to MSW in Europe.
- Feedstock stream can contain >20% total solids (typically 20-40%).
- Different pre-treatment & transfer equipment required due to high-solids content: conveyor belts and pumps designed for highly viscous streams.
- Typically plug flow systems (horizontal or vertical).
- Incoming waste must be inoculated to avoid pockets of acid buildup.

Figure 12). All three systems operate as plug-flow digesters.

Figure from Rapport et al., 2008

Sizing

Reactor Type	Retention Time (days)
Plug Flow	20 - 50
Complete Mix	10 - 20
High Rate (e.g., Fixed Film)	2 - 10

• Selection of Retention Time (θ) dependent on waste

Kompogas process

Figure 15. Overview of the Kompogas process

From the company website, accessed September 2007.

BIOFerm System

• Solids > 40%

The BIOFerm[™] System:

High-solids Single-stage

Advantages

- Biogas generation rates comparable to or greater than wet systems.
- Dilution water often not required.
- High OLR: ~0.1 lbs/gal/d (Dranco), depends on VS content.
- Lower diffusion rate prevents toxic compounds from impacting microbes throughout reactor \rightarrow systems are more robust.
- Minimal pretreatment requirements \rightarrow removal of large materials (> 2 in).
 - Systems more tolerant of contaminants (rocks, glass, plastics, metals, wood, etc.). Contaminants can be removed after digestion.

Disadvantages

- Handling, mixing and pumping of waste are challenging.
 - Heavy duty pumps, augers and conveyors are required to handle waste, which can be expensive.
- Higher capital costs.
- Impacted by general disadvantages of single-stage systems.

High-solids Multi-stage

- Increasingly popular for application to MSW.
- Feedstock stream can contain >20% total solids (typically 20-40%).

Process flow diagram of GICON Biogas Process

(http://www.gicon.de/uploads/tx_sbdownloader/Biogas_GICON_USA_02.pdf)

High-solids Multi-stage

- Advantages
 - General advantages of multi-stage systems
 - Can optimize process stages separately
 - Can incorporate high-rate methanogenesis technologies
 - Higher OLR
 - Higher methane production rates
 - General advantages of high-solids systems
 - Dilution water often not required
 - Systems are more robust
 - Minimal pretreatment requirements
- Disadvantages
 - General disadvantages of high-solids systems and multi-stage systems
 - Higher capital and operating costs
 - More expensive materials handling equipment

Landfill-Based AD

- Landfill cell designed to operate as AD reactor with sourceseparated organic waste
- Low initial/capital costs
- Slower waste conversion \rightarrow lower energy yield

The Process

Images from Yazdani, 2010

Landfill-Based AD

• Advantages

- Can be located at landfill site and utilize existing infrastructure
- May reduce need for additional infrastructure for gas collection
- Lower capital costs than in-vessel AD
- Has been demonstrated at pilot scale for green waste in the US
- Can generate compost post-digestion in single digester cell
- Disadvantages
 - Larger footprint and retention time than in-vessel AD
 - Not yet demonstrated at full scale for food waste

Material Handling Systems

- Currently available European systems generally require extensive pre- and post-digestion handling
 - Receiving: manual or robotic sorting to remove bulky/harmful materials (metals or plastics)
 - Particle size reduction: pulping, grinding, sieving, or biomixers
 - Separation: Magnetism, density (typically for low-solids) or size

Diagram based on Bassano, Italy pre-processing diagram as depicted by Bolzonella et al., 2006.

Figure 6. Dry digester material handling equipment.

Clockwise from top left: staging area with robotic claw; rotating biomixer drum; overs from trommel screen sieves; high-speed drum with integrated sieve and magnetic separator; high-solids slurry pump; feed mixer with steam injection; and dosing unit with steam injection and high-solids slurry pump.

Images from Rapport et al., 2008

History & Current International AD Projects for MSW

- Europe
 - Over the past 25 years, AD applications to MSW/OFMSW have expanded due to waste disposal policies and high landfill tipping fees.
 - Market preference for single-stage processes and dry process. Batch systems are very uncommon.
- Canada
 - BTA model plants for 25,000 MT/y in Toronto
 - BTA model plant designed for 30,000-150,000 MT/ y in Newmarket, Ontario
- Projects have also been built in Japan and Australia.

Solid Waste Anaerobic Digester Capacity in Europe

Figure from Rapport et al., 2008

History & Current US AD Projects for MSW

- Historical
 - <u>1970s:</u> Refuse Converted to Methane (RefCoM) pilot project in Pompano Beach, Fl.
 - <u>1980s:</u> Pilot, multi-stage AD project at Walt Disney World (Gas Technology Institute).
 - <u>1990s:</u>
 - Pilot two-stage digester at Illinois Institute of Technology
 - Pilot thermophilic, high-solids, digester at UC Davis (Microgen Corp.)
 - Pilot high-solids, thermophilic digester in Stanton, Ca
- Current
 - BIOFerm Energy Systems system at the University of Wisconsin
 - BioConverter Systems LLC. AD projects in Los Angeles and Lancaster, CA.
 - SMARTFERM System in City of San Jose

City of San Jose – Zero Waste

Goal: Zero Waste to Landfill

Food + Some Yard Waste

Grass Clippings And Other Yard Waste

Inorganics

Newby Island Compost Facility

San Jose: SMARTFERM Process

Dry Fermentation System

Summary and Conclusions

- A range of AD technologies are available, but applications to OFMSW in the US remain limited.
- Current projects (San Jose, Zero Waste) will be a source of US-relevant data and expand US-based knowledge of how to design and operate AD systems for the solid waste management sector.
- Landfill-based anerobic digestion may be a viable option that can be constructed at landfills to treat material anaerobically and then aerobically.

Selected References

- Bolzonella, D., P. Pavan, S. Mace, and F. Cecchi (2006) *Dry anaerobic digestion of differently sorted municipal solid waste: a full-scale experience*. Water Science and Technology. 53 (8): p. 23-32.
- Hartmann, H. and B.K. Ahring (2006) *Strategies for the anaerobic digestion of the organic fraction of municipal solid waste: an overview.* Water Science and Technology. 53 (8): p. 7-22.
- Levis, J.W. and Barlaz, M.A. (2011) What Is the Most Environmentally Beneficial Way to Treat Commercial Food Waste? Environmental Science & Technology. 45, 7438-7444.
- Rapport, J., Zhang, R., Jenkins, B.M. and Williams, R.B. (2008) *Current anaerobic digestion technologies used for treatment of municipal organic solid waste*: California Integrated Waste Management Board.
- Yazdani, R. (2010) Landfill-based anaerobic-composting pilot project at Yolo County Central Landfill : California Department of Resources Recycling and Recovery.

Contact Information

Dr. Susan De Long Faculty Member Department of Civil and Environmental Engineering Colorado State University

Dr. Sybil Sharvelle

Faculty Member Department of Civil and Environmental Engineering Colorado State University

Email: <u>susan.de_long@colostate.edu</u> <u>CSU Faculty Website</u> Email: <u>Sybil.Sharvelle@Colostate.edu</u> <u>CSU Faculty Website</u>

continuing education

Increasing industry knowledge through educational programs

www.erefcontinuingeducation.org | www.erefdn.org education@erefdn.org (919) 861-6876