Landfills 101 Part 2: Conceptual Design

Lecture Objective

Provide a general introduction to landfills for an engineer who may not have had formal training.

Try to touch on all aspects and lay foundation for more advanced material.

Presentation Outline

- Overview of design process
 - Soils and groundwater
 - Infrastructure and surroundings
- Conceptual design of liners and covers
- Site Operations
 - Fill plan, covers, water management
- Waste decomposition and landfill gas generation
- Leachate Quality

Design and Operation of Landfills

- Soils and hydrogeology
- Site layout and landfill operations
- Containment systems: liners and covers
- Water management
- Gas Production
- Leachate quality
- Groundwater
- Post-Closure monitoring
- Regulation

Landfill Site Plan (simplified)

Landfill Cross Section (simplified)

Design and Operation of Landfills

- Something for everyone
 - Geotechnical
 - Hydrology
 - Hydrogeology
 - Chemistry
 - Biology
 - Finance
 - Legal

1. Solid waste management planning

Public Sector

- Is a landfill needed?
 - Local or out of state?

Private Sector

- Is there a market for a landfll?
 - Where?

- 2. Identify permit and zoning conditions (state/local)
- 3. Site identification
 - Assess available land and eliminate unlikely candidates (wetlands, archaeology, floodplain, airport, politics)
 - Community interaction
 - Technical feasibility study start spending money

4. Site design and preparation of permit application

- Waste footprint
- Layout of supporting facilities (storm water ponds, scale house, leachate storage and treatment)
 - Expansions
- Airspace requirements
- Soil balance
- Leachate treatment alternatives
- Utilities (roads, power)

- 5. Receipt of permit
- 6. Preparation of construction drawings and specifications

Request for bids

7. Construction

Certify construction QA/QC

- 8. Obtain operating permit
- 9. Operation

Groundwater and Soil Properties

- How water moves underground
 - must be able to understand potential impacts of a landfill on groundwater
 - direction of groundwater flow
 - changes in groundwater quality
- How are soils classified
- What soils are appropriate as liners, daily cover, drainage layers

Darcy's Law

• Defines the flow of fluids through porous media (soil) O(flow) = a h

Typical Values of Hydraulic Conductivity

Gravel	1 - 10 ⁻² cm/sec
-Stone (#57)	1
-Pea gravel	10 ⁻¹
Sand	10 ⁻² - 10 ⁻⁴
- clean coarse sand	10-2
- well graded	10-4
Silt	10 ⁻⁵ - 10 ⁻⁶
Clay	< 10 ⁻⁶
Refuse	10 ⁻³ - 10 ⁻⁶ (????)

Groundwater Flow in Aquifers

♦ <u>Aquifer</u>

- transmits significant quantities of water under normal hydraulic gradients
- Confined Aquifer
 - an aquifer between 2 low conductivity layers
- Unconfined Aquifer
 - water table forms the upper boundary

Groundwater Flow in Aquifers

http://www.kgs.ku.edu/Publications/PIC/pic23.html

Site Assessment - Soils

- In order to evaluate the feasibility of a site, the available soils and underlying groundwater must be characterized
 - What types of soil are present on site?
 - Permeability of on-site soils:
 - Use for liner, drainage layer, cover material
 - Is there enough?
 - Availability of off-site soils
 - Depth to bedrock

Site assessment - Soils

- Perform soil borings and characterize soils visually and by lab analysis
- Borings per acre:
 - Suitability 1/acre
 - Detailed design 10/acre

Major Divisions

- Gravel
 - Rounded pebbles, no cohesion
- Sand
 - Granular loose grains, easily visible, no cohesion, settles rapidly
- Silt
 - Barely visible grains, no cohesion, will settle in water in 30-60 minutes
- Clay
 - Invisible cohesive particles, will remain suspended in water for a minimum of several hours

Clays

- The fines fraction is frequently referred to as the p200 fraction - the fraction passing a 200 screen
 - A small decrease in p200 can result in a large increase in conductivity due to changes in grain size distribution
- Slippery when wet
- Difficult to work with or drive on
- Absorb large quantities of water and swell, then shrink as they dry, developing large cracks
 - Freeze/thaw

Grain Size Analysis

Can we make clay?

- <u>Bentonite soil amendment</u>
 - -2 8% bentonite will achieve 10⁻⁸ cm/sec
 - ~30 \$/yd³ to mix bentonite into native soil and compact

Boring Log

LOG OF BORING NO. LG-9

CLIENT						JOB NO. DATE 1275-6-10/85		
ORING LOCATION					SI	HELBY TUBE DIA IN		
		0	z S		C	ASING DIA IN		
	31	5 9	NN	ERV	œ _			
MATERIAL DESCRIPTION	PTH.	PTH.	THE	In Co	DIAS	BORING AND		
SURFACE ELEVATION 250.8	ST	C o	1 I I	R	32	SAMPLING NOTES		
Red brown, moist, very stiff, S	ilty	6-1	3		PP	on S-1;qu = 2.0 tsf		
CLAY, some medium to fine Sand	(MEE)	3-1	8/10	16	-			
Red brown, moist, very stiff, S	ilty		6		PP	on S-2: ou = 2.3 tsf		
CLAY and medium to fine Sand (ME	0 5.5	5 5-2	9/12	18				
Tan to brown to black, moist, me	dium		6					
dense, coarse to fine SAND, trac	e Silt 80	S-3	8/8	16	-			
(SW) Tan moist very dense, coarse	to fine		80/2"	2	Sp	oon refusal at 8.5'		
SAND, some Silt, little fine gr	avel	10	00/2		at	tempted to core-		
rock fragments (decomposed	1	1-0-1.			Dpr	oke thru hard sean		
Gneiss) (SH)						decomposed rock at		
a second and a second damage								
Orange, tan, moist, very dense,	fine	S-6	100/5"		-			
eravel rock fragments. (decompos	ed	115-1-	100/5	1 3 1	-19	5.5' to 16.0' drill		
Gneiss) (SW)	16.	5 5-7	100/1"	0	- 11	uru hard seam		
C-1, Gneiss, white to orange mo	derately	C-1		2	*0	ore barel malfunct-		
hard, unweathered				0	1	on		
C-2 SADE C-1	20.0	20 0-2		30		ity 2" of recovery		
						aced		
		\mathbf{H}			-			
Bottom of bering 20.0'					RC	D = 23/30"		
1								
					_			
		C METHOD		-	ANADI	E TYPE		
WATER LEVEL OBSERVATIONS	HSA-HOLLOW STEM AUGER SCALA CONTINUOUS FLIGHT AUGER S			AMP				
NOTED ON RODSFT.				5- 51	disturbed			
AT COMPLETION 9 8 FT.	AT COMPLETION 9'8" FT. DC -DRIVEN CASING MD -MUD DRILLING				C- C	ore Run		
APTERHRSFT.	RC -ROCK CO	ADVANCER			500.00	nears earliell		
Submet a Castic								
Subsurface Conditions	Advanced Co	ourse				rage 3-3		

Groundwater

- Seasonal high water table
 - Bottom elevation of liner must be at least 4 feet above water table
- Present and potential uses
 - (Well inventory)
- Groundwater quality
- Map of potentiometric surface

Potentiometric Surface

http://www.in.gov/dnr/water/7258.htm

Potentiometric Surface

Conceptual Landfill Liner System

Landfill Liner and Cover Systems: Design Guidelines

- A liner suggests a single layer, a liner system suggests a series of layers working together
- Leakage from liner systems can be very low with proper engineering and construction
- Design principles versus regulations

Geosynthetics

- Synthetic polymers
 - Polyethylene and polypropylene most common
- Geotextiles (relatively permeable)
 - Separation and Filtration
 - Retain soil particles
 - Let water pass
 - Do not clog over time ??
 - Typically used to protect a leachate collection system from clogging

Geosynthetics

- Geonets
 - Substitute for sand or gravel
 - Very high transmissivity, low storage

Geosynthetics

- Geomembrane (low permeability)
 - Vapor and liquid barrier
 - Diffusion may control
- Sheets 23 35' wide, 60 80 mil thick
- Smooth vs. textured

Geocomposites

- A combination of any of the above
- Geobentonite composites:
 - Include a layer of bentonite between two layers of geotextile
 - Geosynthetics may save airspace

Typical Design Guidelines

- Sub-base
 - 6 12" thick
 - Compact to 95% of maximum density
 - K < 10⁻⁵ cm/sec
 - Slope: 2 25% or 1V:4H
 - Soil must be rock free
 - <3/4" if geomembrane in contact
 - <1.5" if clay contact

Secondary Liner Final Protection Between Waste and Environment

- Clay @ <10⁻⁷ cm/sec compacted in 6" lifts
- Overlain by a geomembrane
- Possibly a geobentonite instead
- Must present and follow a QC/QA program
 - Quality Assurance 3rd party inspector

Leachate Detection Zone

- Must <u>rapidly</u> detect, collect and transmit liquid to a collection system
- Function without clogging
- 12" thick
- K > 10⁻² cm/sec (gravel or geonet)
- Contain a perforated piping system at least 4" diameter, sch 80
 - Wrapped in a geotextile
- Slope $\geq 2\%$
- Distance for flow $\leq 100'$ (200' on centers)

Primary Liner System

• Prevent leachate migration and force water into overlying leachate collection system

Options:

- Compacted clay + geomembrane
 Clay: 2' 3' compacted in 6" lifts
 geomembrane 60 mil
- Geobentonite + geomembrane
 Must follow a rigorous QC/QA program
Leachate Collection and Removal

- Must cover bottom and sides of landfill
- Function without clogging (biological, chemical, physical)
- Keep head on liner ≤ 12 "
- 12 18" thick
 - 24" between liner and waste
- $K \ge 10^{-2}$ cm/sec (move towards stone)
- Contain a perforated piping system typically 6" diameter, sch 80 surrounded by noncarbonate stone, wrapped in a geotextile (??)

Leachate Collection and Removal

- No stone > 0.25"
- Slope $\ge 2\%$
 - 8" Headers typically at 1% 2%, provide cleanouts
- Distance for flow < 100' (200' on center)
- Some protection above the leachate collection system is needed
- Options include:
 - Baled refuse
 - Additional soil
 - Tire chips
 - Layer of uncompacted select refuse

Leachate Collection Systems

Leachate Collection Systems

Slide Courtesy of Waste Management

Leachate Collection Systems

Slide Courtesy of Waste Management

Liner Slopes

- Maximum slope is 3(h):1(v) both above and below grade
- Excavations
 - Sand 2:1
 - Clay 0.5:1
 - Other 1:1

Final Cover

Functions:

- keep water out
- control runoff
- separate the waste from plants and animals
- gas collection/odor control
- **Complicating Factors:**
 - plant root penetration
 - freeze/thaw
 - vehicle haul roads
 - differential settlement

Cover Cross Section

Clays

- Hard to compact over sand or refuse
- Desiccate and shrink from both top and bottom
- Thin layers (even 18") of cover do not prevent desiccation
- Final grade > 3% on top, slopes @ 3:1

Vegetation

- Objectives
 - Stabilize soil
 - Minimize erosion
 - Promote evapotranspiration
- Next possible planting season
- > 70% ground cover
- No deep rooted plants or shrubs

Additional Considerations

- Practice is to place final cover once site (or cell) is full
- Differential settlement will cause cracks in clay, geomembranes are more resistant and recommended
- Ideal use an intermediate cover until settlement is complete
 - Financial implications
 - Recover airspace
 - Less maintenance
 - low permeability desirable for gas collection

Final Use

- Decide during design phase
- Can expect settling of 5 15%, more for bioreactors
- Open space / conservancy
- Park requires more maintenance and cover soil
- Gravel parking lot
- Golf course

Summary

- Liners vs. Liner Systems
- Landfills are built in increments cells that hold 2-5 years of waste

Landfill Layout and Operation

- Scalehouse
- Truck washing area
- Drop-off areas
 - recyclables, HHW, white goods, tires, oil, car batteries
 - yard waste possibly composting
- Construction and demolition debris
 - unlined section??

Fill Plan

- Daily cell typically the amount of refuse received in one day and covered
 - Not to be confused with a larger cell
 - 4'-20' high, 8'-12' typical
 - Minimize size to control odors but also have to get trucks in and out
- Orient working face to minimize wind
 - Placement of temporary litter control fence

Fill Plan

- Size working face to minimize at-site time to extent practical
 - ~20' per vehicle
- Normal vs. wet vs. windy weather disposal areas

Daily Cover

- Protects Against:
 - wind blown debris
 - odor
 - animals
- Minimize the amount of cover needed
 - historically soil at a ratio of:
 - 4 yd³ refuse/ 1 yd³ soil
 - now 9:1 is more typical, includes scraping some off in the morning
- Stockpile cover for wet and freezing periods
 - excavate in areas of southern exposure

Alternative Daily Cover

- Foams which are sprayed on and last overnight
 - Posi-shell
- Compost
 - Mixed waste residual from a MRF
 - Yard waste
- Plastic sheet
 - one use
 - multiple use
- C&D fines (without wallboard)

Alternative Daily Cover

- Revenue generating material
 - contaminated soil
 - foundry sand
 - ash
 - auto shredder fluff
 - C&D fines
- Use soil as a fire break weekly

Plastic Sheets Pulled Over Refuse

- Lifecycle 30 applications per panel
- Must be held in place with soil, sandbags, tires
- One time use:

-4 mil film, punch holes in morning

Plastic Sheets Pulled Over Refuse

Site Hydrology

- Run-on must be minimized through the use of diversion ditches
- Design for 25 year storm
- Manage water so minimum amount is contaminated

Temporary berms

- Phased construction to avoid stormwater accumulation
- Valving/berm to segregate clean and contaminated water
- Sediment ponds to treat clean runoff
- Test impounded water before release

Site Hydrology

Active		Future		Future		Future	
Future		Future		Future		Future	

Detailed cell

Temporary berms to separate storm water from leachate

Personnel

- scale attendant /record keeper
- equipment operators
 - compact refuse
 - Push refuse
 - haul cover ?
- litter control
- traffic control
- manager
- mechanic/handyman
- site engineer monitor fill plan
- miscellaneous

Personnel

2500 TPD Site:

- 1-traffic control
- 2-compactors
- 2-laborers
- 1-gate attendant

Refuse Density

- AUF airspace utilization factor
- Allow 1200 1500 lb/yd³ initially
- This values allows for:

– cover soil

• AUF increases with settlement

Landfill Fires

Causes

- hot loads
- lightening
- cigarette butts
- hot equipment
- aeration due to wind
 - spontaneous combustion?

Landfill Fires

- Most occur on windward side slopes
- Spreading from burning grass
- Practices to minimize potential for fire:
 - good compaction
 - soil cover daily
 - load screening

Biological Transformations of Refuse

- Aerobic decomposition
 - Organic matter + $O_2 \rightarrow CO_2 + H_2O + NH_3 + Heat$

 $-\mathrm{NH}_3 + \mathrm{O}_2 \rightarrow \mathrm{NO}_3$

- This is composting air is supplied to refuse
- Anaerobic decomposition
 - Organic matter $\rightarrow --> CO_2 + CH_4 + NH_3 + H_2S$
 - This occurs in landfills
 - Methane is only produced in the absence of oxygen

Methane Production From Landfills

- Landfill gas = $CH_4 + CO_2$
- Methane production rate $= CH_4$
- Must specify temperature and pressure

Methane Production From Landfills

• Composition under steady methane production

CH_4	50 - 70%
CO_2	30 - 50
N_2	2 - 5
$\overline{O_2}$	0.1-1 indicates over pumping
H_2	0-0.2
CO	0 - 0.02
Trace*	0.01 - 0.6

- * petroleum hydrocarbons, chlorinated aliphatics, alkanes, ketones, aldehydes, alcohols, terpenes, siloxanes, H_2S
- Pumping scenario will influence oxygen and nitrogen content significantly

Biodegradable Substrates

- Paper, yard waste and food waste are comprised of cellulose and hemicellulose
- These compounds are converted to CH_4 and CO_2 by bacteria under anaerobic conditions
- Several groups of bacteria are involved

Refuse Decomposition

- Refuse decomposition is affected by:
 - Climate, surface hydrology, pH, temperature, operations
- Exerts an influence on:
 - Gas composition and volume
 - Leachate composition
Trends in Methane, COD, and pH

Landfill Gas Modeling

$$Q_n = k \cdot L_0 \cdot \sum_{i=0}^n \sum_{j=0.0}^{0.9} \frac{M_i}{10} \cdot e^{-k \cdot t_{i,j}}$$

- Q_n is annual methane generation for a specific year t (m³ CH₄/yr);
- **k** is first order decay rate constant (1/yr)
- L₀ is total methane potential (m³ CH₄/ton of waste);
- M_i is the annual burial rate (wet tons)
- t is time after initial waste placement (yr);
- j is the deci-year time increment

Landfill Gas Emissions Model (LandGem) http://www.epa.gov/ttn/catc/products.html#software

Landfill Gas Modeling

- Understand difference between production and collection
- Must assume a collection efficiency to apply over entire landfill life
- Decay rate will vary dependent upon climate and operating conditions

Methane Production Rate Curve for One Year of Waste

Methane Production Rate Curve for Five Years Waste

Effect of L₀ on Methane Production

Effect of Decay Rate (k) on Methane Production

Effect of Decay Rate (k) on Methane Production

Year

Landfill Gas Modeling

- Must be careful to use appropriate waste composition and quantity data
 - Mass of construction debris differs from a mass of food waste
 - Use multiple waste fractions
- Model results
 - Data should be presented as a range given uncertainty
 - Decreasing waste quantities will affect model predictions

Measured Yields

- Lab-scale data (ultimate versus actual)
- Assumptions to fit field data
 - mass of waste and time of burial
 - collection efficiency

Leachate Treatment and Quality

- Leachate storage
- Leachate treatment alternatives
 - On-site with NPDES permit
 - On-site pretreatment
 - Truck or pipe to POTW
 - Will POTW accept leachate and for how long?
 - Evaporation
 - Recirculation

Leachate Treatment and Quality

- Leachate composition represents a composite
 - Water filtering through multiple layers of refuse
 - Short-circuiting
- Typical ranges are very broad
 - Dilution with stormwater

Leachate Quality Interpretation

Leachate

Leachate Composition

- Organics
 - BOD = biochemical oxygen demand
 - COD = chemical oxygen demand
- The BOD is always lower than the COD
- In fresh waste, the BOD/COD could be $\sim 0.7 0.9$
- In well decomposed waste is will be <~0.15

Organic matter + $O_2 \rightarrow CO_2 + H_2O$

Organic matter = intermediates of waste decomposition such as carboxylic acids and alcohols, humic matter

Leachate Composition

- Metals
 - Generally quite low though occasionally a problem with one or more metals (Se, As)
- Ammonia
 - Always elevated (~500 1000 mg/L)

Trends in Methane, COD, and pH are Predictable

Metals Concentrations in DSWA Leachate

MCL – Maximum Contaminant Level

Metals Concentrations in Yolo and Greentree Leachate

Summary

- Landfills are complex engineered facilities that require expertise in many areas
 - Solids and geotechnical engineering
 - Hydrology, chemistry and biology
 - Legal and finance
- Communication amongst interdisciplinary design teams is crucial for success